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Abstract. A family of modified Nicole models is introduced. We show that for particular members of the
family a topological soliton with a non-trivial value of the Hopf index exists. The form of the solitons as
well as their energy and topological charge is explicitly found. They appear to be identical to the so-called
eikonal knots. The relation between energy and topological charge of the solution is also presented. Quite
interestingly it seems to differ drastically from the standard Vakulenko–Kapitansky formula.

1 Introduction

It is widely known that knotted solitons, i.e. topological
solutions with a non-trivial value of the Hopf invariant,
play a prominent role in the modern physics [1], chemistry
[2] and biology [3]. In particular, it has been suggested by
Faddeev and Niemi [4] that effective quasi-particles in the
low energy limit of the quantum gluodynamics, so-called
glueballs, may be described as knotted flux-tubes of the
gauge field. In this picture a non-vanishing value of the
topological charge provides stability of configurations and,
via the Kapitansky–Vakulenko inequality [5] between en-
ergy and topological charge, fixes the mass spectrum of
glueballs. In fact, they proposed a model (the Faddeev–
Niemi model) [4,6], where such knotted solutions have
been numerically found [7–9]. It has been also argued by
many authors that this model might be derived from the
original quantum theory [10–14]. However, up to now, no
satisfactory proof that the Faddeev–Niemi model is the
low energy limit of the pure quantum Yang–Mill theory
has been given.

Unfortunately, due to the fact that the Faddeev–Niemi
model belongs to non-exactly solvable theories only nu-
merical [7–9] or some approximated solutions have been
obtained [15,16]. In consequence, many problems concern-
ing the properties of the Faddeev–Niemi hopfions have
not been solved yet. Therefore, a few models based on the
same degrees of freedom and topology but possessing ana-
lytical solutions have been constructed [17,18]. For exam-
ple in the Aratyn–Ferreira–Zimerman model [18] infinitely
many solitons with an arbitrary Hopf number have been
found. Such toy models gave a chance to understand the
connections between topological charge and shape of a so-
lution as well as allowed us to check the energy–charge
inequality. On the other hand, in the case of the second
widely investigated toy model i.e. the Nicole model [17] (it
is the oldest model with explicitly found hopfion) the spec-
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trum of the solutions is scarcely known. Only the simplest
hopfion with |QH | = 1 has been found.

The main aim of the present paper is to prove that
slightly modified Nicole models possess in their spectrum
of solutions hopfions with topological charge QH = −m2,
where m ∈ Z, and analyze their properties like shape,
energy etc. In particular, we are interested in checking of
validity of the Vakulenko–Kapitansky formula.

2 Model and solutions

Let us start with the following Lagrangian density:

L =
1
2
σ(n)(∂µn∂µn)

3
2 , (1)

where n is a unit, three component vector field living in
the (3+1) Minkowski space-time. This model differs from
the original Nicole Lagrangian only via a function σ, which
in the case of the Nicole model is just a constant. One can
see that the appearance of a non-trivial σ function will
result in the explicit breaking of the global O(3) sym-
metry. Models with this property have been recently with
versatility investigated [19,12,20,21]. The physical impor-
tance of such models follows from the observation that the
Faddeev–Niemi model possesses two massless Goldstone
bosons since the spontaneous O(3) symmetry breaking oc-
curs. Thus, in order to get rid of these massless states one
is forced to implement the explicit symmetry breaking i.e.
to add a new term into the Lagrangian which is not invari-
ant under this global symmetry. Indeed, it has been shown
that in some particular patterns of the symmetry break-
ing the Goldstone bosons are removed from the spectrum
of the theory and a mass gap appears [22].

In our work the symmetry breaking function is as-
sumed in the following form:
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σ(n) =
(

1 + n3

1 − n3

) 3
2 ( 1

m −1)

 1 + 1+n3

1−n3

1 +
(

1+n3

1−n3

) 1
m




3

, (2)

where m is an integer and positive number. Now, we take
advantage of the stereographic projection

n =
1

1 + |u|2 (u + u∗,−i(u − u∗), |u|2 − 1) (3)

and rewrite the Lagrangian (1) as follows:

L =

(
|u| 1

m −1

1 + |u| 2
m

)3

(∂µu∂µu∗)
3
2 . (4)

Thus, the pertinent equation of motion reads

3
2
∂µ



(

|u| 1
m −1

1 + |u| 2
m

)3

(∂νu∂νu∗)
1
2 ∂µu




− (∂νu∂νu∗)
3
2

∂

∂u∗



(

|u| 1
m −1

1 + |u| 2
m

)3

 = 0. (5)

Analogously as in the case of the standard Nicole La-
grangian, our model possesses an integrable submodel de-
fined by the additional condition which is nothing else but
the eikonal equation [23,24]

∂µu∂µu = 0. (6)

Then, one can adopt the procedure introduced in [25] and
construct an infinite family of conserved currents.

One has to remember that solutions of the integrable
submodel must obey, except the integrability condition
introduced above, also dynamical equations achieved from
(5):

∂µ

[
|u| 1

m −1

1 + |u| 2
m

(∂νu∂νu∗)
1
2 ∂µu

]
= 0. (7)

Let us now find topological solutions of the integrable
submodel (6) and (7). The first step is to introduce the
toroidal coordinates

x =
ã

q
sinh η cos φ,

y =
ã

q
sinh η sin φ,

z =
ã

q
sin ξ, (8)

where q = cosh η − cos ξ and ã is a dimensional constant
which fixes the scale in the coordinates. Moreover, the
solution is assumed to have the following form [18]:

u(η, ξ, φ) = f(η)eim(ξ+φ), (9)

where the unknown function f is yet to be determined. It
is a well-known fact [18,23,20] that for smooth functions

f such that f(0) = ∞ and f(∞) = 0 the map (9) corre-
sponds to a non-vanishing value of the topological charge.
Indeed, one can get that

QH = −m2. (10)

Inserting Ansatz (9) into (7) we obtain

∂η


 f

1−m
m

1 + f
2
m

(
f ′2

η + m2 cosh2 η

sinh2 η
f2
) 1

2

f ′
η


 (11)

− m2 cosh2 η

sinh2 η

f
1−m

m

1 + f
2
m

f

(
f ′2

η + m2 cosh2 η

sinh2 η
f2
) 1

2

+
f

1−m
m

1 + f
2
m

(
f ′2

η + m2 cosh2 η

sinh2 η
f2
) 1

2

f ′
η

cosh η

sinh η
= 0.

After some calculations, it can be reduced to the more
compact form

∂µ ln


 f

1−m
m

1 + f
2
m

(
f ′2

η + m2 cosh2 η

sinh2 η
f2
) 1

2

|f ′
η|



+ m2 cosh2 η

sinh2 η

f

|f ′| +
cosh η

sinh η
= 0. (12)

On the other hand, our submodel is defined not only by
the dynamical field equation (7) but also by the constraint
(6), which in the case of the upper introduced Ansatz takes
the following form:

f ′2
η = m2 cosh2 η

sinh2 η
f2. (13)

Thus, the dynamical equation can be simplified:

∂η ln

[
f

1−m
m

1 + f
2
m

f ′2
]

= −(m + 1)∂η ln sinh η. (14)

Applying once again the constraint (13) we find that

∂η ln

[
cosh2 η

sinh2 η

f
1+m

m

1 + f
2
m

]
= −(m + 1)∂η ln sinh η. (15)

This differential equation can be easily solved and in con-
sequence we derive an algebraic equation for f :

cosh2 η

sinh2 η

f
1+m

m

1 + f
2
m

=
(

1
sinh η

)m+1

. (16)

The solution of this equation reads

f(η) =
1

sinhm η
. (17)

One can check that it solves our constraint (13) as well.
Thus, the Ansatz (9) where the shape function, i.e. the
function f , takes the above obtained form (17) is a static,
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topologically non-trivial solution of the integrable sub-
models. One can immediately notice that for m = 1 the
well-known unit charge hopfion, which is a solution to the
standard Nicole model, is reproduced.

It should be underlined that every exact solution (17),
labeled by m ∈ N , refers to a different modified Nicole La-
grangian. We have proved that any model (1) with m ∈ N
possesses a topological solution with QH = −m2. This is
unlikely for the Aratyn–Ferreira–Zimerman model where
an infinite family of hopfions has been found. Nonetheless,
our calculation shows that also in the framework of the
modified Nicole models some exact hopfions with higher
than one topological charge can be constructed.

Let us now compute the corresponding energy. Using
the stereographic projection we derive

E =
∫

d3x

(
|u| 1

m −1

1 + |u| 2
m

)3

(∂iu∂iu
∗)

3
2 . (18)

Taking into account the form of the Ansatz one can rewrite
this expression as follows:

E = (2π)2 (19)

×
∫ ∞

0
dη sinh η

(
f

1−m
m

1 + f
2
m

)3(
f ′2

η + m2 cosh2 η

sinh2 η
f2
) 3

2

.

Finally, inserting our solution we obtain that

E = (2π)22
3
2 m3

∫ ∞

0

sinh η

cosh3 η
=

√
2(2π)2m3. (20)

Quite interestingly, the energy of the hopfion is related
with its topological charge by the following relation:

E =
√

2(2π)2|QH | 3
2 , (21)

which differs considerably from the standard Vakulenko–
Kapitansky formula. Vakulenko and Kapitansky proved
that in the case of the Faddeev–Niemi model the energy of
the solution is bounded from below by the corresponding
topological charge. Namely,

E ≥ C|QH | 3
4 , (22)

where C is a numerical constant. Recently, new results
concerning the upper bound have been presented in [26].
It has been also shown that asymptotically for a large
topological charge the energy is proportional to |Q|3/4.
Moreover, it was checked by direct calculations that this
relation is valid for all known solutions of the Aratyn–
Ferreira–Zimerman model [18] as well as its generaliza-
tions [20,27]. Indeed, the energy grows proportional to
|Q|3/4.

Here, for the modified Nicole models, such a sublinear
behavior is not longer held. Indeed, the exponent charac-
terizing the dependence on the topological index is bigger
than one and reads 3

2 . Of course, the Vakulenko–Kapi-
tansky inequality is valid since E ≥ C|Q|3/2 ≥ C|Q|3/4.
Nonetheless, the different value of the exponent can result

in a modification of the interaction between the hopfions.
Instead of the standard clustering phenomena (a separated
multi-soliton configuration tends to form a clustered, re-
ally knotted state) one should rather expect splitting i.e.
decay of a soliton with high topological charges into un-
knots with unit Hopf index.

One can notice that there may be a trivial solution
to this unexpected relation between energy and the topo-
logical index. Namely, the presented solitons are not the
energy minima in the fixed topological sector. Then there
may exist less energy solutions which would saturate the
Vakulenko–Kapitansky formula. Such a possibility is also
interesting as it suggests that stable configurations could
be given not by the unknots obtained here but by really
knotted solitons. Due to the fact that such a property is
observed in the Faddeev–Niemi model [8,9], it would in-
dicate that the Nicole toy model is much more relevant to
the investigation of hopfions than the Aratyn–Ferreira–
Zimerman model.

However, it must be stressed once again that we do
not know whether all hopfions corresponding to any of
the modified models follow the relation (21) since only one
hopfion for each modified model has been obtained. Thus,
as far as no solutions with other values of the topological
charge will be found, our energy–charge relation has to be
treated only as a conjecture.

3 Conclusions

In the present work, a modification of the Nicole Lagran-
gian has been considered. For each member of the family of
the modified models (1) (labeled by an integer and positive
parameter m) a topological solution with QH = −m2 has
been found. Let us briefly summarize the obtained results.

First of all, we have shown that all solitons are un-
knots, that is, surfaces corresponding to constant values
of the unit, vector field n are toruses. It resembles the situ-
ation known from the Aratyn–Ferreira–Zimerman model.
This fact can be treated as a disadvantage of the toy mod-
els since Faddeev–Niemi hopfions are really knotted ob-
jects without toroidal symmetry.

However, the most important observation we have
made concerns the energy–charge inequality. As we have
discussed before, there are some arguments indicating that
the energy of the hopfions for each of the modified Nicole
models is proportional to Q

3/2
H rather than Q

3/4
H as one

could expected from the Vakulenko–Kapitansky inequal-
ity.

Undoubtedly, further studies are needed. For example,
the validity of this conjecture should be checked. We would
like to address this problem in a forthcoming paper.

Acknowledgements. This work is partially supported by Foun-
dation for Polish Science FNP and ESF “COSLAB” program.
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